87-e31 Segment No. 10-22-10 WA-22-4045 # McCLEARY WASTEWATER TREATMENT PLANT CLASS II INSPECTION bу Don Reif Washington State Department of Ecology Water Quality Investigations Section Olympia, Washington 98504-6811 #### ABSTRACT A Class II inspection was conducted at the McCleary Wastewater Treatment Plant on August 26-27, 1986. The plant was operating very well and experienced no NPDES permit violations. Effluent quality was exceptional, and improvement due to plant upgrade in 1982 was dramatic. Several minor recommendations concerning lab technique and sampling were noted. An experiment to determine possible adverse effects of the dechlorination system is suggested. #### INTRODUCTION A Class II inspection was conducted at the McCleary Wastewater Treatment Plant on August 26 and 27, 1986, at the request of Darrel Anderson of Ecology's Southwest Regional Office (SWRO). Conducting the survey was Don Reif, WQIS, with assistance from Nancy Kmet, SWRO, and McCleary's head operator, Jim Wright. This survey represents the first Class II inspection since the plant upgrade was completed in 1982. Objectives included: - 1. Sample collection and analysis to estimate plant loadings and treatment efficiency. - 2. Determine NPDES permit compliance. - 3. Perform a laboratory review, including sample splits, for accuracy and adherence to accepted techniques. - 4. Estimate treatment improvements since plant upgrade. A receiving water study was conducted on Wildcat Creek at the same time, and is documented in a separate report (Kendra, 1987). ## SITE LOCATION AND DESCRIPTION The town of McCleary has operated a trickling filter/anaerobic digestion wastewater treatment plant since 1952. Figure 1 shows the plant location. The receiving stream, Wildcat Creek, has a history of water quality problems (Devitt, 1973). Wastewater effluent was found to cause violation of state water quality standards for dissolved oxygen, ammonia, fecal coliform bacteria, chlorine residual, and aesthetic values (Kendra, 1987). These adverse effects were enhanced by the very low dilution in Wildcat Creek. To protect water quality and aquatic life in Wildcat Creek, the facility was upgraded in 1982. The upgrade to "advanced" secondary treatment added several new features to the McCleary plant (Figure 2). A trickling filter tower with plastic media (biotower) and final clarifier were added to enhance effluent quality and treatment stability. Also, a fine-mesh rotating screen at the headworks removes inorganic materials that could plug Figure 1. Site location: McCleary Wastewater Treatment Plant, August 1986. AUGUST 1986. FLOW SCHEMATIC: MCCLEARY WIP, 7 FIGURE SAMPLING POINTS 8 WASTEWATER FLOW SLUDGE FLOW ---- the trickling filters. Finally, plant effluent is dechlorinated with sulfur dioxide. #### METHODS Table 1 lists the sampling schedule for the McCleary survey. Twenty-four hour composite samples were collected at the raw influent wet well and final effluent, prior to chlorination. Approximately 200 mL were collected at 30-minute intervals. McCleary's operators collected composite samples at the same locations. Both sets of composites were split between Ecology's and McCleary's labs for analysis and comparison. Grab samples were collected by Ecology at several intermediate stations throughout the plant (Figure 2). Besides raw influent, samples were collected from: primary influent, after the fine screen; primary effluent; intermediate clarifier effluent, after the rock trickling filter; secondary clarifier effluent, before chlorination; chlorinated effluent, after the chlorine contact chamber; and dechlorinated final effluent. #### RESULTS AND DISCUSSION Analytical results of the McCleary inspection are listed in Table 2. # Flow Effluent flow is measured through a six-inch Parshall flume prior to the chlorine contact basin. The meter is calibrated every six months by a qualified technician. Average plant flow rate is limited to 0.25 MGD by permit, although this figure is occasionally exceeded in wet weather. Typical dry weather flows range from 0.20 to 0.25 MGD. During rainy weather the flow can be as high as 0.45 MGD. The 24-hour flow during the inspection, from the plant's meter, was 0.20 MGD. This number is used in all calculations. #### General Conditions The McCleary wastewater plant was operating very well at the time of the inspection. Overall, the treatment process reduced pollutant levels as follows: BCD, 96 percent; COD, 86 percent; TSS, 88 percent; and ammonia-nitrogen, 99+ percent. This level of performance is outstanding for secondary treatment plants, and indicates a sound design as well as conscientious operation and maintenance. At McCleary, anaerobically digested sludge is dewatered on sand drying beds. Farmers and local residents used the dried sludge for fertilizer Table 1. Sampling schedule - McCleary Class II Inspection, August 1986. | A American series employment extended, miss and | Andreas and Anna | | | | 4. | Field | | Analysi | យ | | | | | آا | abora | aboratory | Analysı | V515 | | | | | | |---|---|--|----------------------|----------------------------------|-------|-------|-------|---------|-------------|-------|-------|--------|-------|---------|-------------|-------------------|---------|------|----------|------|------------------|-------------------|-----| | əldms2 | Sampler | Laboratory | Date | əmiT | .qmeT | Нq | .bnoJ | .o.a | .bisəM .[h] | Нq | Turb. | .bnoJ | Alk. | T. Hard | Sulfate (4) | (4) abilos
S2T | | EIIN | .4 LatoT | F.C. | BOD ² | CBOD ² | 000 | | Composite
Influent
(I-C) | Ecology
McCleary | Ecology
McCleary
Ecology
McCleary | 8/26-27 | 0400-
0400-
0800-
0800- | ~×××× | 0×××× | n×××× | व | ru. | × × v | ~ × × | a3 × × | o × × | 0 × × | | 0 × × | n n | 15 | - × × | 6 17 | | 1.0 | X X | | Effluent
(5-C) | Ecology
McCleary | Ecology
McCleary
Ecology
McCleary | 8/26-27 | 0930-
0900-
0800- | | | | | | × × | × × | | × × | × × | × × | × × | * * | | * * | | ×××× | × | × × | | <u>Grabs</u>
Influent | | | 8/26
8/26
8/27 | 1045
1535
1050 | ××× | ××× | ××× | | | ××× | × × × | *** | ××× | *** | | × × × | *** | × × | *** | | | | ××× | | Primary
Influent | | | 8/26
8/26 | 1030
1530 | × × | × × | × × | | | × × | ×× | × × | × × | | | × × | * * | × × | * * | | | | × × | | Primary
Effluent | | | 8/26
8/26 | 1030
1530 | × × | × × | × × | | | ×× | × × | × × | × × | | | × × | * * | * * | * * | | | | × × | | Intermediate
Effluent | e
ن | | 8/26
8/26 | 1015 | × × | × × | × × | | | * * | × × | × × | × × | | | × × | * * | × × | × × | | | | × × | | Secondary
Clarifier
Effluent | | | 8/26
8/26
8/27 | 0950
1510
1025 | × × × | × × × | ××× | | | ××× | × × × | × × | ××× | ××× | - | * * * * | * * * | * * | *** | | | | ××× | | Chlorinated
Effluent | 13 | | 8/26
8/27 | 1430
1030 | | | | | × × | | | | | | | | | | | × × | | | | | Final Eff.
(after de-
chlorination) | (00 | | 8/26
8/26
8/27 | 0945
1500
1035 | ×× | × × | ** | * | * * | × × | × × | × × | × × | ļ | | ** | × × | × × | ** | × | | | ×× | Table 2. Analytical Results - McCleary Class II Inspection, August 26-27, 1986 | Ecol Ecol 8/26-27 McCl Ecol 8/26-27 McCl Ecol 8/26-27 Ecol 8/26-27 Ecol 8/26-27 Ecol 8/26-27 | me
mperature (^o C) | | | | , | (| (| | | | | | | | | ; | | | |---|-----------------------------------|-----------|----------------|-----------------|--|-----------------|-----------------|------------|----------|-------------------------|--------|-------|----------|-------------|--|------------------|-------------------|------------------------| | | | (.U.2) Hq | Cond. (umhos/c | Dissolved Oxyge | Cl ₂ Residual (t ₁ | Turbidity (MTU) | Cond. (umhos/cm | Alkalinity | Hardness | Sulfate
Total Solids | SANL | SSI | SSANL | N-ZON + EON | $^{\mathrm{N-}}\epsilon^{\mathrm{HN}}$ | ROD ² | CBOD ² | COD
Fecal Coliforms | | | | 5 8.6 | 2 | | | 7 .6 31 | 8
438 | 9 200 | 10
58 | 11 12
18 370 | 0 210 | 14 | 10 | 16 | 17 | | 19 20 | | | | 17.5 | 5 7.5 | 540 | | 7. | 7.4 28 | 3 510 | 0 190 | 4 9 | 20 380 | 0 210 | | 10 | .03 | | 4.3 | 200 | 320 | | McCl 8/26-27 | | | | | 7. | 7.5 4 | | 99 | 72 | 28 340 | 0 210 | | 7 | 4 | | 5.5 10 | 9 2 | 52 | | | | | | | 7. | 7.7 9 | | 99 | 89 | 27 330 | 0 190 | 0 10 | ~ | 13 | | 5.4 10 | 10 | 59 | | | 20. | 5 9.2 | 500 | | 7. | | | | | 4 | | | | 2.4 | 20 | m
m | | 320 | | 8/26 1 | | | 440 | | 7. | 7.1 23 | 3 456 | 5 150 | 7.4 | 300 | 0 150 | 0 240 | 13 | 0.4 | 10 | m.
m | | 280 | | | 20. | 4.4 | 470 | | 8 | | | | | 50 | | | | 3.0 | | 5.6 | | 380 | | 8/26 10 | | 9 8.7 | 560 | | œ | 8.1 45 | | | | 420 | | | Ü | 2.9 | 1.6 | 3.3 | | 400 | | | 19. | ! | 420 | | 7. | .3 22 | 2 454 | 1 150 | | 2 | 0 140 | 0 67 | ₹ | 3.0 | 9.6 | 8,5 | | 270 | | 8/26 10 | | 6 8.1 | 520 | | 7.0 | ٠. | | | | 32 | | | ₹ | 1.2 | 15 | 3,3 | | 180 | | | 20. | | 084 | | 7. | .5 20 | 0 532 | 2 180 | | 350 | 0 220 | 34 | 7 | .21 | 16 | 3.3 | | 210 | | 8/26 10 | | 5 7.6 | 480 | | 7. | .46 | 478 | 3 140 | | 220 | 061 03 | 0 10 | <1 | 2.4 | 13 | 4.6 | | 86 | | | 21. | 7. | 530 | | 7. | ري
ري | 52 | | | 31 | | | 7 | 3.0 | 0 | 4.6 | | 11 | | | 19. | 7. | 440 | | 7. | ٠. | 425 | | 78 | 17 | | | 7 | 1.2 | .15 | 4.6 | | 47 | | 8/26 15 | 1510 21.4 | 7.9 | 044 | | 7. | 4. | 428 | 57 | 7.4 | 350 | 0 230 | 6 0 | Ç (| 50 C | .13 | 4.7 | | 39 | | | .07 | , | 074 | | | | | 0/ | 0/ | v) | _ | | 7 | 24 | | n. | | at.
33 | | 8/26 1,
8/27 10 | 1430
1030 | | | 90 | 0.5
0.4 | | | | | | | | | | | | | 4~ | | | 18. | 9 7.6 | 430 8 | 8.2 < | (0.1 7.0 | 40 | 424 | 89 | | 410 | 0 300 | 0 11 | 7 | 54 | .20 | ه. 4
د. | | 43 | | 8/26 1 | _ | 7, | 460 | ` | 7. | -a | 4.2 | | | 47 | | | ः | 14 | 91. | 4.5 | | 43 | *Units for all parameters are mg/L unless otherwise noted. prior to 1980. Since then, the sludge has been stockpiled on site. A suitable use or disposal site needs to be found. #### Dechlorination The dechlorination system was effective during the inspection. No chlorine residual (<0.1 mg/L) was detected in the final effluent. The sulfur dioxide reactions are as follows (WPCF, 1977): - 1. with water: $SO_2 + H_2O = H_2SO_3$ - 2. with free chlorine residual: $H_2SO_3 + HOCL = H_2SO_4 + HCL$ - 3. with combined chlorine residual: $H_2SO_3 + NH_2CL + H_2O = NH_4HSO_4 + HCL$ - 4. with oxygen: $H_2SO_3 + 0.5O_2 = H_2SO_4$ Equation 1 shows the general reaction when sulfur dioxide mixes in water to form sulfurous acid. The sulfurous acid may then react with free and/or combined chlorine (equations 2 and 3). If excess SO is added, dissolved oxygen will be bound (equation 4). Dechlorination with sulfur dioxide can therefore have two undesirable side-effects. Effluent pH can be depressed because acid is formed by all of the reactions. Also, effluent dissolved oxygen concentrations may drop if excess SO_2 is added. Because of the potential for lowered pH and D.O. in the final effluent due to SO₂, a two-day experiment is suggested. Dissolved oxygen, pH, and chlorine residual in the final effluent should be measured at two-hour intervals for 24 hours. This should be done during both high- and low flows, and the results recorded. As flows diminish at night, problems may occur that are not noticeable during the day. If adverse conditions are noted, changes in the manual settings may suffice. Otherwise, it may be necessary to replace the manual control of these systems with flow-paced automatic controls. ## Permit Compliance The inspection data are compared to NPDES permitted conditions in Table 3. All parameters were within permit limits for both monthly and weekly averages during the inspection. Table 3. Comparison of inspection data to permit parameters - McCleary Class II Inspection, August 1986. | | Efflue | nt Limitat | ions | |---|----------------------------|-----------------|------------| | | Monthly | Weekly | Inspection | | Parameter | Average | Average | Results | | | | | | | BOD ₅ , mg/L : 1b/day
SS, mg/L : 1b/day | 15:31 | 23:47 | 5:8.3 | | SS, mg/L : 1b/day | 15:31 | 23:47 | 9:15 | | F.C. $(\#/100 \text{ mL})$ | 200 | 400 | 16 | | NH ₃ -N, mg/L | < 2 | 900 WAL | 0.18 | | D.d., mg/L | 5 8 | Page 4800 | 8.2 | | Total Chlorine, mg/L | $\overline{ ext{N}}$. D . | Militar African | <0.1 | | pH | 6.0 - 9.0 | MICH Street | 7.6 | | Flow, MGD | 0.250 | - | 0.20 | N.D. = not detectable # Carbonaceous Biochemical Oxygen Demand A comparison of BOD_5 to nitrification-inhibited, or carbonaceous BOD_5 (CBOD₅), from Table 2 suggests that ammonia may be exerting an oxygen demand on McCleary's BOD results. This nitrogeneous oxygen demand may be from residual effluent ammonia or from ammonium chloride in the dilution water. To document this influence, a series of both BOD_5 and CBOD₅ tests should be run in summer and winter. From these results a change from BOD_5 to CBOD₅ may be in order. # Laboratory Review Laboratory techniques and procedures were generally very good. Two recommendations are made. Nutrient and buffer solutions for BOD dilution water should be added just prior to test set—up, rather than several days before. Also, a larger filter apparatus, such as 47mm diameter, may improve ease and reliability of solids determinations. A smaller sample volume must be used with the 24mm diameter Gooch crucible currently used. Table 4 lists results of split sample comparison between labs. The effluent results compared quite well. Fecal coliform counts varied somewhat, but may have been due to different analytical procedures. The Ecology lab used membrane filtration, while the most-probable-number method was utilized by Grays Harbor County Health Department, for McCleary's sample. Table 4. Comparison of sample splits - McCleary Class II Inspection, August 1986. | | | | BOD ₅ | TSS | Fecal
Coliform | Dissolved
Oxygen | |-----------------------|---------------------|--|--------------------------|------------------------|-------------------|---------------------| | Sample | Sampler | Laboratory | (mg7L) | (mg/L) | (#/100 mL) | (mg/L) | | Influent
Composite | Ecology
McCleary | Ecology
McCleary
Ecology
McCleary | 180
165
190
120 | 80
123
76
134 | | | | Effluent
Composite | Ecology
McCleary | Ecology
McCleary
Ecology
McCleary | 5
7.2
10
11 | 9
11
10
14 | | | | Effluent
Grab | Ecology
McCleary | Ecology
McCleary | | | 4
49 | 8.2
7.7 | McCleary's analysis indicated higher TSS values for both influent samples. Each lab found similar TSS values between composite samples, but McCleary's results were much higher for both samples. Compositor bottles and sampling lines are currently flushed weekly with water. It is recommended that a chlorine bleach solution be used weekly on influent lines and monthly on effluent lines, or sooner if needed. Final effluent D.O.s should be measured on-site with the plant's portable D.O. meter. Current practice is to transport a grab sample into the lab and then test the D.O. concentration. On-site measurements may be more accurate. # 1973 versus 1986 Inspection Results Ecology inspection results from 1973 (Devitt, 1973) are compared in Table 5 to the current survey. The comparison is limited by the few data available from the 1973 inspection. Effluent quality was significantly improved for the parameters listed. Table 5. Comparison of 1986 Class II inspection with limited 1973 inspection - McCleary Wastewater treatment plant. | 1973 | <u>1986</u> | |------|-------------------------------| | 7.6 | 7.5; 7.6 | | 550 | 425 | | 31 | 10 | | 111 | 59; 52 | | 27 | 9 | | 20 | 16 | | | 7.6
550
31
111
27 | ## Percent Removal | BOD ₅ | 66 percent | 94 percent | |------------------|------------|------------| | COD | 59 percent | 86 percent | ## SUMMARY AND RECOMMENDATIONS The McCleary Wastewater Treatment Plant was operating very well at the time of the inspection. Effluent quality was very good, and no NPDES permit parameters were violated. A comparison of 1986 to 1973 inspection data showed many significant increases in effluent quality. A laboratory review and sample split comparison indicated generally very good laboratory technique. Recommendations concerning lab procedures are as follows: - 1. Nutrient and buffer solutions for BOD dilution water should be added just prior to test set-up. - 2. A larger filter apparatus may improve ease and reliability of solids determinations. - 3. A chlorine bleach solution may be used to clean compositor bottles and sampling lines. - 4. Final effluent D.O.s should be measured on-site with the plant's portable D.O. meter. Because of low dilution ratio, careful control of the chlorination and dechlorination systems is very important. An experiment was suggested in the "dechlorination" section to aid in understanding these systems at McCleary. Based on the results, changes to the manual control systems may be necessary. A solution should be found to the sludge disposal problem. A beneficial use (fertilizer, soil conditioner, etc.) is preferable to landfill. A series of ${\rm CBOD}_5$ tests, perhaps one per month, should be compared to ${\rm BOD}_5$ results. Based on the findings, a permit change allowing ${\rm CBOD}_5$ may be considered. #### REFERENCES - Devitt, R., 1973. In-house memorandum, Wash. St. Dept. of Ecology, February 15, 1973. - Kendra, W., 1987. "Effects of McCleary Wastewater Treatment Plant Effluent on Water Quality and Macroinvertebrate Community Structure in Wildcat Creek, Washington." Wash. St. Dept. of Ecology, Water Quality Investigations Section, April, 1987. - Musgrove, N., 1977. "Water Quality Studies of Wildcat Creek near McCleary, Washington." Wash. St. Dept. of Ecology, Water and Wastewater Monitoring Section, summer 1977. - WPCF. "Manual of Practice #8: Wastewater Treatment Plant Design." 1977.